ScienceDaily (Jan. 13, 2012) ? A special group of proteins, the so-called chaperones, helps other proteins to obtain their correct conformation. Until now scientists supposed that hydrolyzing ATP provides the energy for the large conformational changes of chaperone Hsp90. Now a research team from the Nanosystems Initiative Munich (NIM) could prove that Hsp90 utilizes thermal fluctuations as the driving force for its conformational changes.
The? journal PNAS reports on their findings.
ATP is the major energy source for most organisms and ATPases are the machines, which utilize this fuel, for example to move muscles or cargo in our body. The very abundant chaperone protein Hsp90 has such an ATPase in each of its two monomers. During the last years experiments had suggested that the movement and conformational changes of ATPase proteins are in general strictly linked to ATP binding and hydrolysis (i.e. fuel consumption).
To probe this theory Thorsten Hugel, Professor at the Technische Universitaet Muenchen (TUM) and member of the Nanosystems Initiative Munich (NIM), and his team designed a special three color single-molecule FRET (F?rster resonance energy transfer) assay with alternating laser excitation (ALEX) for simultaneous observation of ATP binding and conformational changes. Unexpectedly the experiments revealed that binding and hydrolysis of ATP is not correlated with the large conformational changes of Hsp90. Hsp90 is instead a highly flexible machinery driven by thermal fluctuations.
"Thermal fluctuations are random changes in the structure of the protein -- they can be thought of as collisions with water molecules in the environment, which move rather violently at the temperatures in a living organism," says Thorsten Hugel. "Using these clashes to switch back and forth between different conformations, saves Hsp90 valuable ATP." But then what is the task of ATPase in the Hsp90 chaperone? The scientists suspect that co-chaperones and substrate proteins alter the system so that ATP binding or hydrolysis can take a crucial task.
With the newly developed experimental setup, it is now possible to investigate the very complex system in greater detail to resolve this important question. The Munich biophysicists therewith offer a new perspective on the energy conversion in molecular machines.
The work was supported by grants from the DFG (Hu997/9-1, SFB 863) and the Cluster of Excellence Nanosystems Initiative Munich (NIM) and the NanoBio-Technology program of the Elite Network of Bavaria.
Recommend this story on Facebook, Twitter,
and Google +1:
Other bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Technische Universitaet Muenchen.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- C. Ratzke, F. Berkemeier, T. Hugel. Heat shock protein 90's mechanochemical cycle is dominated by thermal fluctuations. Proceedings of the National Academy of Sciences, 2011; 109 (1): 161 DOI: 10.1073/pnas.1107930108
Note: If no author is given, the source is cited instead.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.
Source: http://www.sciencedaily.com/releases/2012/01/120113210612.htm
dragnet dragnet immaculate conception immaculate conception rule 5 draft lindsay lohan playboy cover lindsay lohan playboy cover
No comments:
Post a Comment